MODEL MNDO CALCULATIONS FOR ROTAMERS OF a-ACYLNITROXIDES AND OF N-NITROSONITROXIDES

ALEXANDRU T. BALABAN*

Polytechnic Institute, Department of Organic Chemistry, Splaiul Independentei 313, 76206 Bucharest, Roumania

ERNST-ULRICH WiRTHWEIN and PAUL von RAGUE SCHLEYER Institut für Organische Chemie, Friedrich-Alexander-Universität **Erlangen-NUrnberg, Henkestrasse 42, D-8520 Erlangen, West Germany**

(Received in UK 19 November 1986)

Abstract. **Results of MNDO calculations for models of a-acylnitroxides show, in agreement with experiment, that** *transoid* **conformations (38) have lower** energies and higher nitrogen spin densities than *cisoid* conformers (3A). By **contrast, N-nitrosonitroxides are found to have lower energy in the cisoid conformation** *14AI* **due to the operation of an anomeric effect.**

Rotational isomerism is possible in persistent free radicals : **in the semidione 1** and hydroxamic acid 2 radical anions, and in the neutral a-acylnitroxide 3 and N-nitroso**nitroxide** *4* **radicals. The ESR coupling constants of** *chid* **and** *trmsoid* **rotamers differ** markedly. Thus, when only the *cisoid* conformation is possible, as in 3D, a_N is about 5.7 Gauss.¹ This is appreciably lower than the a_N values of about 7.5 Gauss² in acyclic α -acyl**nitroxides which prefer the** *trmsoid* **conformation 3B. Two possible reasons for the preferred** *trumoid* **conformation are lower steric hindrance between R groups. and favorable dipole- -dipole orientation of C=O and N-O bonds.**

The present note concerns N-aryl-N-nitrosonitroxides *4* **(R = phenyl or substituted phenyl groups) which were prepared by several methods, namely by the spin-trapping reaction of nitrosobenzene derivatives with NO, by oxidation of N-nitroso-N-phenylhydroxylamine, its derivatives or its salt (e.g. cupferron), and by decomposition of N-aryl-N-sulphonyl-nitroxides.3 Their ESR spectra showed that :3**

 a_{N-0} = 9.8 - 10.4 Gauss, a_{N-0} = 3.4 - 3.8 Gauss.

We report here results of half-electron MNDO calculations⁴ for model systems 3 $(R = H)$ and $4 (R = H)$. This method is better suited than unrestricted Hartree-Fock calculations which gave inconclusive results because of spin contamination.⁵ In addition to the cisoid (A, dihedral angle $\theta = 0^{\circ}$) and transoid conformations (B, $\theta = 180^{\circ}$), both belonging to the C_S point group, calculations were also performed for a non-planar orthogonal conformation $C(\vec{\theta} = 90^{\circ})$, with symmetry C_1 .

Table 1 presents data for 3 (R = H) and for 4 (R = H).

 $\frac{a}{n}$ Angles in degrees, distances in Angstroms, energies (ΔH_f and relative energy E_{rel}) in kcal/mol, dipole moments (DM) in Debye units.

The surprising result is that the lowest energy conformer corresponds *t0* **the** transoid geometry 3B for α-acylnitroxides and to the *cisoid* geometry 4A for N-nitrosonitro**xides. The energy difference between the two conformers are similar (2iO.I** *kcal/mOl). In both* cases, the orthogonal conformation C₁ has the higest energy; the energy difference (which **should correspond approximately to the rotational barrier) is small for** *3* **and larger for 4. Calculated bond lengths and bond angles differ slightly for conformers** *A* **and B,and markedly** for the orthogonal conformer. The calculated dipole moment for 3B is 0.3 D, but with decreasing θ , the dipole moment increases steeply attaining 4.5 D for 3A. By contrast, there is **little difference between calculated dipole moments for** *4A* **(2.8 0) and 48 (2.0 D).**

Spin densities were calculated from the squared eigenvectors of p, orbitals (eigenvectors of s orbitals were negligibly small), and are presented in Fig. 1. (No numerical results are presented for orthogonal conformations C , because the spin density is practically **confined only to the two nitroxidic N and 0 atoms, in disagreement with experimental data).** A slightly smaller spin density for the nitrogen in the *cisoid* conformation 3A than in the transoid one 3B is indeed found, in qualitative agreement with experimental data. By contrast, **the nitroxidic nitrogen has a higher spin density in the** *ciaoid* **conformation** *4A* **than in the** *krumoid* **one 4B. There are no experimental data for any** *trmsoid* **derivative.**

One may conclude that unlike acyclic a-acylnitroxides which prefer a *transoid* conformation 3B in the ground state, N-nitrosonitroxides adopt a *ciaoid* conformation 4A. In confir**mation of this conclusion, the experimental ratio between hyperfine coupling constants** a_{N-0} / $a_{N=0}$ is 10.2/3.75 = 2.72 for N-(3,5-di-t-butylphenyl)-N-nitrosonitroxide, 10.34/3.78 = **p** 2.73 for N-phenyl-N-nitrosonitroxide, 10.2/3.8 = 2.68 for N-p-tolyl-N-nitrosonitroxide, and 10.3:3.43 = 3.00 for N-p-chlorophenyl-N-nitrosonitroxide,³ in better agreement with the calculated ratio 0.2676 / 0.0968 = 2.76 for $4A$ than 0.2555 / 0.1099 = 2.32 for $4B$.

The reasons for the difference in relative energies of the cisoid **and transoid isomers of 3 and 4 seem clear. Isomer 38 has the lower dipole moment and less electrostatic** repulsion than *3A.* While the dipole moment of $4A$ is (somewhat) higher than $4B$, the former is more stable because of the generalized anomeric effect ("negative hyperconjugation").⁶ **The nitrogen lone pair in 4A engages in a stabilizing hyperconjugative interaction with the** *mti B-N-O* **bond.**

Acknowledgement. We are grateful to Dr. T. Clark for helpful comments and we thank the Fonds der **Chemischen Industrie for support of this work at Erlangen.**

REFERENCES

- 1. A.T. Balaban, H.G. Aurich, J. Trösken, E. Brugger, D. Döpp and K.H. Sailer, Tetrahedron, 30, **739 (1974)** ; **A.T. Balaban, I. Pascaru and F. Culban,** *J. Mugs. Reson., 7,* **241 (1972).**
- 2. D. Döpp, Chem. Ber., 104, 1035 (1971) ; H.G. Aurich and J. Trösken, *Liebigs Ann. Chem.*, 745, 159 (1971) ; **H.G. Aurich and F. Blr,** *Tetrahedron, 14,* **1623 (1968); G. Chapelet-Letourneux, Ii. Lemaire and A. Rassat, BUZZ. SOC.** *Chim. France,* **3283 (1965).**
- **3. A.T. Balaban, N. Negoita and I. Pascaru, Reo. Rown.** *Ch-im., 16,* **712 (1971)** ; **A.T. Balaban and N. Negoita, ibid., 17. 1227 (1972) ; N. Negoita, R. Baican, F. Domsa and A.T. Balaban, ibid., g. 995 (1973)** ; **A.T. Balaban, N. Negoita and R. Baican.** *J. Mqn. Reson., 2,* 1 (1973) ; M.T. Caproiu, N. Negoita and A.T. Balaban, Tetrahedron Lett., 1825 (1977).
- **4. M.J.S. Dewar and W. Thiel,** *J. Am. Chem.* **SOC., 2, 4899, 4907** (1977) ; M.J.S. **Dewar and M.L. McKee, ibid., 99, 5231 (1977)** ; **M.J.S. Dewar and G.P. Ford, ibid., 5558 (1979).**
- **5. M. Hillebrand and A.T. Balaban,** *Rev. Rown. Chim., 25,* **995 (1980).**
- 6. P.v.R. Schleyer and A.J. Kos, Tetrahedron, 39, 1141 (1983).